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In this technical report, we investigate deep invertible networks for EEG-based brain signal 
decoding  and find them to generate realistic EEG signals as well as classify novel signals 
above chance. Further ideas for their regularization towards better decoding accuracies are 
discussed. 
 

Introduction 
Deep-learning-based brain-signal decoding has recently achieved competitive accuracies 
compared with traditional feature-based decoding approaches. For example, they were used to 
decode movement-related EEG signals with accuracies at least as good as well-established 
movement-decoding approaches (Schirrmeister et al., 2017a) and been applied to error or 
event-related-based decoding (Lawhern et al., 2018, Völker et al., 2018) as well as automatic 
diagnosis of pathologies (Schirrmeister et. al, 2017b).  
 
Still, there are several desirable things that are challenging to achieve with conventional 
deep-learning-based brain-signal decoding. Among them are: 

● interpret the trained models 
● integrate unlabelled data 
● detect if the distribution of the EEG signals has changed since the network was trained 

 
 
A principled approach that tackles these challenges are generative networks. Generative 
network in a class-conditional setting are here defined as networks that learn the joint likelihood 
of any input and label combination. As such, these methods can integrate unlabelled data for 
semi-supervised learning by optimizing the conditional likelihood for the datapoints with labels 
and the unconditional likelihood for the datapoints without labels (Izmailov et al., 2019) 
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A recent promising generative network approach are invertible networks (Dinh et al., 2014, Dinh 
et al., 2016) They can learn probability distributions in the input space by keeping track of how 
much the input-output mapping defined by the invertible network squeezes or expands volume 
and using a predefined output distribution such as a gaussian distribution. One property that 
makes them particularly interesting for high-dimensional data that often arises in the medical 
domain is their low memory usage: Due to their invertibility, they have a constant memory usage 
with regards to the depth of the network in contrast to a linearly increasing memory usage for 
conventional deep networks. This allows to train deeper networks even on very 
high-dimensional data. 
 
In this technical report, we apply invertible networks to the task of EEG-based brain-signal 
decoding. We develop an invertible architecture that can create visually indistinguishable 
synthetic EEG signals and simultaneously classify novel EEG signals. Apart from visual 
analysis, we also validated the quality of the generated signals by showing that a conventional 
deep neural network classifies them largely into the correct classes and that a conventional 
deep neural network trained purely on these generated signals classifies real EEG signals 
better than chance. We present several ideas how to regularize the invertible classification 
networks to further close the still-existing gap between their decoding accuracies and those of 
conventional convolutional networks. 
 

Methods 

Invertible Networks 
Invertible networks (Dinh et al., 2014, Dinh et al., 2016) are networks where each building block 
of the network is invertible by design. One popular such building block are additive or affine 
coupling layers that work by splitting the input x into disjoint parts x1,x2. For the additive 
coupling block, it proceeds to compute its output as:   

(x ) y1 = F 2 + x1  
(y ) y2 = G 1 + x2  

This can be easily inverted by: 
(y )x2 = y2 − G 1  
(x )x1 = y1 − F 2  

 
One key property of these additive coupling blocks is that they do not change any volume from 
input to output. Therefore, given a prior probability distribution in the output space (e.g.,  a 
gaussian distribution) and a chain of invertible blocks, if you compute the likelihood values at 
each point in the input space by using the prior in the output space and the inverse of the chain 
of additive blocks, the likelihood values still integrate to 1 in the input space, and therefore still 
constitute a proper probability distribution. For other types of transformations, to ensure you still 
get a proper probability distribution in the input space, you have to keep track of the volume 



changes at any point from input to output and account for it by the changes of variable formula. 
The probability  of point  in the input space  can then be computed from the mapping(x)pX x X  
function  (e.g., as implemented by a neural network) and the prior  in output space as such:f pH  
Us: 

|, where  is the jacobian of the mapping function  with regards to(x) (f (x)) detpX = pH · | ∂x
∂f (x)

∂x
∂f (x) f  

input . For an arbitrary network, this jacobian is very expensive to compute.x   
 
Since the additive coupling blocks do not change volume, they are very easy to train by 
maximum likelihood of the data under the invertible network and the given prior by directly 
maximizing . As the prior distribution, we take a class-conditional uncorrelated gaussian(f (x))pH  
distribution, and also optimize the means and standard deviations of each class-conditional 
gaussian distribution jointly with the network parameters. This is mathematically identical to the 
scaling layer introduced in Dinh et al. (2014) and an additional bias layer, with both of them 
having independent parameters for each class. We find this to optimize fairly robustly, in 
contrast to a recent work that attempted to optimize the entire covariance matrix of the 
class-conditional gaussian distributions. 
 
 
There are also other invertible building blocks that allow for an easy computation of these 
volume change terms. Other building blocks can be more expressive than pure additive 
coupling blocks. Additive coupling blocks are inherently constrained in what they can represent - 
for example, additive coupling blocks will always transform a uniform distribution into another 
uniform distribution, just with potentially different support. Nevertheless, additive coupling blocks 
still often achieve decent performance and are potentially more stable to train, therefore we 
used them in this first attempt to create an invertible network on EEG signals. 
 
One issue with maximum likelihood training for invertible networks is that you normally only 
have a finite training set which has a volume of 0. Therefore the network may overfit by 
assigning arbitrarily high likelihoods to the training data points. One way to alleviate this is by 
adding a small uniform dequantization noise to the data, originally motivated to undo the 
quantization of images to 256 discrete color values (Theis et al., 2015). Beyond that, noise may 
also be added in different ways to optimize or regularize the invertible network further 
(Ardizzone et al., 2019; Ho et al., 2019). 
 

Optimal transport 
 
As an alternative to maximum likelihood training, we also explore optimal transport based 
optimization. The optimal transport distance measures the cost of morphing one distribution into 
another one as follows:  

1. Define a distance function on the support of both distributions, for example the euclidean 
distance. 



2. Find a weight for any pair of points  where x is from the support of distribution  and,x y P  
 is from the support of distribution  such that: (1) the sum of the weights at eachy Q  

point equals the probability  and at each point equals the probability  (2) Thex (x)p y (y).q  
sum of the weighted distances is minimal. 

See for a Peyré et al. (2019) more detailed explanation. 
 
Since our datasets are smaller than typical image classification datasets, we can afford to 
compute the optimal transport between the complete training set, and a 3 times larger sample of 
generated data. 
 

Network architecture 

 

 
Figure 1: Network Architecture. ConvRevNet here always consists of a chain of several 
subchains of: 1 Subsampling Layer, 2 Additive Coupling Blocks with F and G functions as 
shown below (Conv1d, ReLU, Conv1D), 1 Subsampling Layer,... We include an FFT layer at the 
very end for easier aggregation of global information. 
 
Our concrete architecture consists of subsampling layers and additive coupling layers and is 
schematically shown in Figure 1. 

High Gamma dataset 
The High-Gamma dataset contains 4 second trials of either executed right hand, left hand, feet 
movements or of resting state. It is described more in detail in (Schirrmeister et. al, 2017a) In 
this technical report, we only use the right hand and resting state trials as they should yield very 
different types of signals. Also, since we are still developing the model, we restricted ourselves 
to evaluations on a 80/20 split on the training set and did not include the final evaluation dataset 
in any form.  



Results 
 

 Test 
accuracy 
[%] 

Train 
accuracy 
[%] 

Invertible Network 82.9 89.1 

Deep ConvNet 92.5 100 

Shallow ConvNet 93.0 100 

Table 1: Decoding accuracies from optimal transport-based optimization. Results on 
subjects 5-9 from the High-Gamma dataset. 

Optimal transport 
Optimal transport-based optimization yielded decoding accuracies substantially above chance 
(50%), however also roughly 10% worse than conventional convolutional networks (see Table 
1). Also, the deep ConvNet trained purely on generated signals reaches ~64% accuracy on real 
signals, showing that the generated signals do retain some of the discriminative information 
from the real signals. 
Class-conditional means in the output-space represented meaningful representative 
class-prototypes when visualized in the input space as seen in Figure 2. Individual dimensions 
are harder to interpret (Figure 3). 



 
Figure 2: Class-conditional output-space means visualized in the input space. Signals 
show the result of inverting the optimized class means  in the output space to the input space 
via the invertible network for an exemplary subject. Typical expected class differences between 
right hand and resting state visible such as suppressed alpha rhythms on the left side for the 
right hand movement, however also unexpected differences such as baseline differences 
between the classes visible. 



 
Figure 3: Individual dimensions of the output space of an invertible network. Starting at 
the mean for one class, changing one dimension in the out space from a low (blue) to a high 
(red) value and visualizing the correspondingly inverted signals in the input space. 
 
 
 

Maximum likelihood 
Also with maximum likelihood, we were able to generate realistic EEG-signals (see Figure 4), 
both as judged by their visual appearance, as well as when comparing the spectra of generated 
and real EEG signals (Figure 5). 



 
Figure 4: Examples of matched generated and real data from the maximum likelihood 
trained model. Thick lines represent real data, thin lines generated data samples, matching of 
real and generated data points by optimal transport. Blue lines show a real EEG channel, 
orange lines show a virtual channel that is always zero, existing for implementation reasons. 
Generated data often closely follows real data, for real channel as well as for virtual channel. 

 
Figure 5: Spectral of real and generated data from the maximum likelihood trained model. 
Spectra are qualitatvely very similar between generated and real signals. 
 
 
 
 
 
 



 

Unevaluated Ideas 
For the regularization of the invertible networks, we developed two ideas which we have not 
properly evaluated yet. The first idea is to use invertible networks to perform minibatch-based 
mixture model estimation with one mixture per datapoint, the second idea is to compare 
likelihoods of the trained invertible network on a training and a validation dataset to likelihoods 
of a fixed simple prior distribution and use these to dynamically regularize the network. 
 

Invertible networks for mixture model optimized using minibatches 
Invertible networks can be used to scale up mixture model estimation with one mixture per 
datapoint to large datasets using minibatches. Normally to compute the likelihood of a datapoint 
under a mixture model, one has to have access to each mixture component since the likelihood 
is the average likelihood across all mixture components (assuming a uniform distribution over 
the mixture components). This can make such likelihoods computationally very expensive to 
compute in case one wants to use each training datapoint as the center of a mixture 
component, e.g., of a gaussian distribution. However, one can also train an invertible network 
using maximum likelihood optimization to learn the mixture distribution. Crucially, this now 
allows to optimize parameters of the mixture component distributions on a validation set using 
minibatches as follows. Assuming the invertible network  currently computes the exactf  
likelihoods of the mixture distribution and given a batch of training and validation datapoints, one 
can first subtract the likelihoods of the corresponding training mixture components from the 
invertible network likelihoods on the validation datapoints. This way, one can for example train 
individual standard deviations for each training point mixture component. 
 

Regularization by Comparison to Prior Distribution 
We also developed an idea to regularize the invertible network dynamically during training as 
follows. Given a splitting into training and validation data, track the average log likelihood of the 
invertible network and of a simple prior such as a gaussian in the input space both for the 
training and the validation data. Whenever the increase in log likelihood from the gaussian prior 
to the current invertible network for the validation data becomes smaller then the increase in log 
likelihood of the invertible model between the validation and the training data, optimize the 
invertible network towards the likelihoods from the simple prior. 
 
 



Conclusion 
We have developed an deep invertible network architecture that can simultaneously classify and 
generate EEG signals. We have suggested two ideas to further regularize them so that their 
decoding accuracies may become more competitive in comparison with conventional 
convolutional networks for EEG decoding. 
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