
Technical Report: Deep Invertible Networks for
EEG-based brain-signal decoding

Robin Tibor Schirrmeister , Tonio Ball¹ 1 2

July 14th, 2019

In this technical report, we investigate deep invertible networks for EEG-based brain signal
decoding and find them to generate realistic EEG signals as well as classify novel signals
above chance. Further ideas for their regularization towards better decoding accuracies are
discussed.

Introduction
Deep-learning-based brain-signal decoding has recently achieved competitive accuracies
compared with traditional feature-based decoding approaches. For example, they were used to
decode movement-related EEG signals with accuracies at least as good as well-established
movement-decoding approaches (Schirrmeister et al., 2017a) and been applied to error or
event-related-based decoding (Lawhern et al., 2018, Völker et al., 2018) as well as automatic
diagnosis of pathologies (Schirrmeister et. al, 2017b).

Still, there are several desirable things that are challenging to achieve with conventional
deep-learning-based brain-signal decoding. Among them are:

● interpret the trained models
● integrate unlabelled data
● detect if the distribution of the EEG signals has changed since the network was trained

A principled approach that tackles these challenges are generative networks. Generative
network in a class-conditional setting are here defined as networks that learn the joint likelihood
of any input and label combination. As such, these methods can integrate unlabelled data for
semi-supervised learning by optimizing the conditional likelihood for the datapoints with labels
and the unconditional likelihood for the datapoints without labels (Izmailov et al., 2019)

1 Translational Neurotechnology Lab, Medical Center - University of Freiburg, Germany
2 Machine Learning Lab, University of Freiburg, Germany. Correspondonce to: Robin Tibor
Schirrmeister<robin.schirrmeister@uniklinik-freiburg.de>.

A recent promising generative network approach are invertible networks (Dinh et al., 2014, Dinh
et al., 2016) They can learn probability distributions in the input space by keeping track of how
much the input-output mapping defined by the invertible network squeezes or expands volume
and using a predefined output distribution such as a gaussian distribution. One property that
makes them particularly interesting for high-dimensional data that often arises in the medical
domain is their low memory usage: Due to their invertibility, they have a constant memory usage
with regards to the depth of the network in contrast to a linearly increasing memory usage for
conventional deep networks. This allows to train deeper networks even on very
high-dimensional data.

In this technical report, we apply invertible networks to the task of EEG-based brain-signal
decoding. We develop an invertible architecture that can create visually indistinguishable
synthetic EEG signals and simultaneously classify novel EEG signals. Apart from visual
analysis, we also validated the quality of the generated signals by showing that a conventional
deep neural network classifies them largely into the correct classes and that a conventional
deep neural network trained purely on these generated signals classifies real EEG signals
better than chance. We present several ideas how to regularize the invertible classification
networks to further close the still-existing gap between their decoding accuracies and those of
conventional convolutional networks.

Methods

Invertible Networks
Invertible networks (Dinh et al., 2014, Dinh et al., 2016) are networks where each building block
of the network is invertible by design. One popular such building block are additive or affine
coupling layers that work by splitting the input x into disjoint parts x1,x2. For the additive
coupling block, it proceeds to compute its output as:

(x) y1 = F 2 + x1
(y) y2 = G 1 + x2

This can be easily inverted by:
(y)x2 = y2 − G 1
(x)x1 = y1 − F 2

One key property of these additive coupling blocks is that they do not change any volume from
input to output. Therefore, given a prior probability distribution in the output space (e.g., a
gaussian distribution) and a chain of invertible blocks, if you compute the likelihood values at
each point in the input space by using the prior in the output space and the inverse of the chain
of additive blocks, the likelihood values still integrate to 1 in the input space, and therefore still
constitute a proper probability distribution. For other types of transformations, to ensure you still
get a proper probability distribution in the input space, you have to keep track of the volume

changes at any point from input to output and account for it by the changes of variable formula.
The probability of point in the input space can then be computed from the mapping(x)pX x X
function (e.g., as implemented by a neural network) and the prior in output space as such:f pH
Us:

|, where is the jacobian of the mapping function with regards to(x) (f (x)) detpX = pH · | ∂x
∂f (x)

∂x
∂f (x) f

input . For an arbitrary network, this jacobian is very expensive to compute.x

Since the additive coupling blocks do not change volume, they are very easy to train by
maximum likelihood of the data under the invertible network and the given prior by directly
maximizing . As the prior distribution, we take a class-conditional uncorrelated gaussian(f (x))pH
distribution, and also optimize the means and standard deviations of each class-conditional
gaussian distribution jointly with the network parameters. This is mathematically identical to the
scaling layer introduced in Dinh et al. (2014) and an additional bias layer, with both of them
having independent parameters for each class. We find this to optimize fairly robustly, in
contrast to a recent work that attempted to optimize the entire covariance matrix of the
class-conditional gaussian distributions.

There are also other invertible building blocks that allow for an easy computation of these
volume change terms. Other building blocks can be more expressive than pure additive
coupling blocks. Additive coupling blocks are inherently constrained in what they can represent -
for example, additive coupling blocks will always transform a uniform distribution into another
uniform distribution, just with potentially different support. Nevertheless, additive coupling blocks
still often achieve decent performance and are potentially more stable to train, therefore we
used them in this first attempt to create an invertible network on EEG signals.

One issue with maximum likelihood training for invertible networks is that you normally only
have a finite training set which has a volume of 0. Therefore the network may overfit by
assigning arbitrarily high likelihoods to the training data points. One way to alleviate this is by
adding a small uniform dequantization noise to the data, originally motivated to undo the
quantization of images to 256 discrete color values (Theis et al., 2015). Beyond that, noise may
also be added in different ways to optimize or regularize the invertible network further
(Ardizzone et al., 2019; Ho et al., 2019).

Optimal transport

As an alternative to maximum likelihood training, we also explore optimal transport based
optimization. The optimal transport distance measures the cost of morphing one distribution into
another one as follows:

1. Define a distance function on the support of both distributions, for example the euclidean
distance.

2. Find a weight for any pair of points where x is from the support of distribution and,x y P
 is from the support of distribution such that: (1) the sum of the weights at eachy Q

point equals the probability and at each point equals the probability (2) Thex (x)p y (y).q
sum of the weighted distances is minimal.

See for a Peyré et al. (2019) more detailed explanation.

Since our datasets are smaller than typical image classification datasets, we can afford to
compute the optimal transport between the complete training set, and a 3 times larger sample of
generated data.

Network architecture

Figure 1: Network Architecture. ConvRevNet here always consists of a chain of several
subchains of: 1 Subsampling Layer, 2 Additive Coupling Blocks with F and G functions as
shown below (Conv1d, ReLU, Conv1D), 1 Subsampling Layer,... We include an FFT layer at the
very end for easier aggregation of global information.

Our concrete architecture consists of subsampling layers and additive coupling layers and is
schematically shown in Figure 1.

High Gamma dataset
The High-Gamma dataset contains 4 second trials of either executed right hand, left hand, feet
movements or of resting state. It is described more in detail in (Schirrmeister et. al, 2017a) In
this technical report, we only use the right hand and resting state trials as they should yield very
different types of signals. Also, since we are still developing the model, we restricted ourselves
to evaluations on a 80/20 split on the training set and did not include the final evaluation dataset
in any form.

Results

 Test
accuracy
[%]

Train
accuracy
[%]

Invertible Network 82.9 89.1

Deep ConvNet 92.5 100

Shallow ConvNet 93.0 100

Table 1: Decoding accuracies from optimal transport-based optimization. Results on
subjects 5-9 from the High-Gamma dataset.

Optimal transport
Optimal transport-based optimization yielded decoding accuracies substantially above chance
(50%), however also roughly 10% worse than conventional convolutional networks (see Table
1). Also, the deep ConvNet trained purely on generated signals reaches ~64% accuracy on real
signals, showing that the generated signals do retain some of the discriminative information
from the real signals.
Class-conditional means in the output-space represented meaningful representative
class-prototypes when visualized in the input space as seen in Figure 2. Individual dimensions
are harder to interpret (Figure 3).

Figure 2: Class-conditional output-space means visualized in the input space. Signals
show the result of inverting the optimized class means in the output space to the input space
via the invertible network for an exemplary subject. Typical expected class differences between
right hand and resting state visible such as suppressed alpha rhythms on the left side for the
right hand movement, however also unexpected differences such as baseline differences
between the classes visible.

Figure 3: Individual dimensions of the output space of an invertible network. Starting at
the mean for one class, changing one dimension in the out space from a low (blue) to a high
(red) value and visualizing the correspondingly inverted signals in the input space.

Maximum likelihood
Also with maximum likelihood, we were able to generate realistic EEG-signals (see Figure 4),
both as judged by their visual appearance, as well as when comparing the spectra of generated
and real EEG signals (Figure 5).

Figure 4: Examples of matched generated and real data from the maximum likelihood
trained model. Thick lines represent real data, thin lines generated data samples, matching of
real and generated data points by optimal transport. Blue lines show a real EEG channel,
orange lines show a virtual channel that is always zero, existing for implementation reasons.
Generated data often closely follows real data, for real channel as well as for virtual channel.

Figure 5: Spectral of real and generated data from the maximum likelihood trained model.
Spectra are qualitatvely very similar between generated and real signals.

Unevaluated Ideas
For the regularization of the invertible networks, we developed two ideas which we have not
properly evaluated yet. The first idea is to use invertible networks to perform minibatch-based
mixture model estimation with one mixture per datapoint, the second idea is to compare
likelihoods of the trained invertible network on a training and a validation dataset to likelihoods
of a fixed simple prior distribution and use these to dynamically regularize the network.

Invertible networks for mixture model optimized using minibatches
Invertible networks can be used to scale up mixture model estimation with one mixture per
datapoint to large datasets using minibatches. Normally to compute the likelihood of a datapoint
under a mixture model, one has to have access to each mixture component since the likelihood
is the average likelihood across all mixture components (assuming a uniform distribution over
the mixture components). This can make such likelihoods computationally very expensive to
compute in case one wants to use each training datapoint as the center of a mixture
component, e.g., of a gaussian distribution. However, one can also train an invertible network
using maximum likelihood optimization to learn the mixture distribution. Crucially, this now
allows to optimize parameters of the mixture component distributions on a validation set using
minibatches as follows. Assuming the invertible network currently computes the exactf
likelihoods of the mixture distribution and given a batch of training and validation datapoints, one
can first subtract the likelihoods of the corresponding training mixture components from the
invertible network likelihoods on the validation datapoints. This way, one can for example train
individual standard deviations for each training point mixture component.

Regularization by Comparison to Prior Distribution
We also developed an idea to regularize the invertible network dynamically during training as
follows. Given a splitting into training and validation data, track the average log likelihood of the
invertible network and of a simple prior such as a gaussian in the input space both for the
training and the validation data. Whenever the increase in log likelihood from the gaussian prior
to the current invertible network for the validation data becomes smaller then the increase in log
likelihood of the invertible model between the validation and the training data, optimize the
invertible network towards the likelihoods from the simple prior.

Conclusion
We have developed an deep invertible network architecture that can simultaneously classify and
generate EEG signals. We have suggested two ideas to further regularize them so that their
decoding accuracies may become more competitive in comparison with conventional
convolutional networks for EEG decoding.

References
Ardizzone, L., Lüth, C., Kruse, J., Rother, C., & Köthe, U. (2019). Guided Image Generation with
Conditional Invertible Neural Networks. arXiv preprint arXiv:1907.02392.

Dinh, L., Krueger, D., & Bengio, Y. (2014). Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516.

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv
preprint arXiv:1605.08803.

Ho, J., Chen, X., Srinivas, A., Duan, Y., & Abbeel, P. (2019). Flow++: Improving flow-based
generative models with variational dequantization and architecture design. arXiv preprint
arXiv:1902.00275.

Izmailov, P., Kirichenko, P., Finzi, M. & Wilson, A. (2019) Semi-Supervised Learning with
Normalizing Flows. In Workshop on Invertible Neural Nets and Normalizing Flows at ICML 2019.

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J.
(2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer
interfaces. Journal of neural engineering, 15(5), 056013.

Peyré, G., & Cuturi, M. (2019). Computational optimal transport. Foundations and Trends® in
Machine Learning, 11(5-6), 355-607.

Schirrmeister, R., Gemein, L., Eggensperger, K., Hutter, F., & Ball, T. (2017, December). Deep
learning with convolutional neural networks for decoding and visualization of EEG pathology. In
2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1-7). IEEE.

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K.,
Tangermann, M., ... & Ball, T. (2017). Deep learning with convolutional neural networks for EEG
decoding and visualization. Human brain mapping, 38(11), 5391-5420.

Theis, L., Oord, A. V. D., & Bethge, M. (2015). A note on the evaluation of generative models.
arXiv preprint arXiv:1511.01844.

Völker, M., Schirrmeister, R. T., Fiederer, L. D., Burgard, W., & Ball, T. (2018, January). Deep
transfer learning for error decoding from non-invasive EEG. In 2018 6th International
Conference on Brain-Computer Interface (BCI) (pp. 1-6). IEEE.

